پارامترهای مؤثر بر فشار شکست در آزمون شکست هیدرولیکی، مدل‌سازی به روش تفاضل محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران،دانشگاه زنجان؛ زنجان، ایران

چکیده

اگرچه شکست هیدرولیکی دارای کاربردهای فراوانی می باشد اما فشار شکست بدست آمده از پروسه شکست هیدرولیکی دارای اهمیت فراوانی است، از این جهت که این فشار به تنش های برجای محیطی ارتباط پیدا می کند. در شکست هیدرولیکی سیال در طی زمان، به درون یک گمانه تزریق می شود تا زمانیکه فشار آن به حدی برسد که در جدار گمانه شکست کششی رخ دهد. فشار سیال درون گمانه، در لحظه رخداد شکست را فشار شکست می گویند که معادل است با نقطه پیک بدست آمده از منحنی فشار-زمان. روابط ساده و کلاسیکی وجود دارد که فشار شکست را به تنش های برجای محیطی ارتباط می دهد و تخمین تنش های برجا از چالش های مهم در ژئومکانیک می باشد. در این مقاله به مدل سازی شکست هیدرولیکی با استفاده از شبکه تفاضل محدود پرداخته می شود. مدلسازی به صورت دوبعدی با فرض کرنش مسطح می باشد. هدف از مدلسازی بررسی بر روی پارامترهای موثر بر فشار شکست می باشد، پارامترهایی که در روابط کلاسیک وجود ندارند اما موثر بر فشار شکست هستند. پس از صحت سنجی مدل و مطابق با نتایج این مقاله فشار شکست نه تنها به تنش های برجا و مقاومت کششی سنگ ارتباط دارد، بلکه شعاع گمان های که در آن شکست انجام می شود و ترک های از قبل موجود در جدار گمانه پارامترهایی موثر در شکست هیدرولیکی و فشار شکست هستند. تغییرات شعاع گمانه در حالت تنش های برجای همسان، تأثیری بر فشار شکست ندارد، اما در حالت تنشهای ناهمسان، افزایش شعاع گمانه موجب کاهش فشار شکست میشود و با افزایش تنش انحرافی (اختلاف بین تنش های برجا،) نرخ کاهش فشار شکست نیز افزایش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effective Parameters on Breakdown Pressure in Hydraulic Fracturing, Modeling with Finite Difference Method

نویسندگان [English]

  • A. Lakirouhani
  • S. Farkhondeh
Department of Civil Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

Although hydraulic fracturing has many applications, but breakdown pressure from hydraulic fracturing process is very important, since this pressure is related to the in situ stresses. The hydraulic fracturing fluid over time, injected into a borehole until it reaches to the limit such that tensile fractures occur in the wellbore wall. At the moment of occurrence of fracture, fluid pressure within the wellbore, said the breakdown pressure that is equivalent to the peak point of the pressure-time curve. There are simple and classical relations that related breakdown pressure to the in situ stresses. Estimation of in-situ stresses is a major challenge in Geomechanic. In this paper, the finite difference modeling of hydraulic fracturing will be discussed. Modeling is base on two-dimensional plane strain assumptions. The purpose of the modeling is to study on parameters affecting the breakdown pressure, parameters that do not exist in the classical relations but affect the breakdown pressure. After validation of the model and in accordance with the results of this paper, breakdown pressure not only is related to the in-situ stresses and rock tensile strength but also wellbore radius and pre-existing cracks in the wall of the wellbore are parameters that involved in hydraulic fracturing and breakdown pressure. For isotropic in situ stresses variation of wellbore radius don’t effect on the breakdown pressure but for non-isotropic in situ stresses with increasing wellbore radius breakdown pressure decreases and with increasing deviatoric stresses (difference between in situ stresses), the rate of breakdown pressure reduction increases.

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • Finite Difference Method
  • Numerical modeling
  • Breakdown Pressure
  • In- Situ Stresses
  • Wellbore Radius
[1] M. Economides, K. Nolte, Reservoir Stimulation (2nd ed.), 1989.
[2] M. Economides, K.N. (Eds.), Reservoir Stimulation (3rd ed.), 2000.
[3] D. Mendelsohn, A review of hydraulic fracture modeling—part I: general concepts, 2D models, motivation for 3D modeling, Journal of Energy Resources Technology, 106(3) (1984) 369-376.
[4] P. Valko, M.J. Economides, Hydraulic fracture mechanics, Wiley New York, 1995.
[5] J.L. Gidley, Recent advances in hydraulic fracturing, 1989.
[6] B. Haimson, F. Cornet, ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF), International Journal of Rock Mechanics and Mining Sciences, 40(7-8) (2003) 1011-1020.
[7] A. Bunger, E. Detournay, A. Lakirouhani, Modelling Hydraulic Fracture Breakdown, Shut-in, and Reopening for In Situ Stress Testing, in: AGU Fall Meeting Abstracts, 2010.
[8] M.K. Hubbert, D.G. Willis, Mechanics of hydraulic fracturing, 1957.
[9] A. Zang, O. Stephansson, Stress field of the Earth's crust, Springer Science & Business Media, 2009.
[10] B. Haimson, C. Fairhurst, Initiation and extension of hydraulic fractures in rocks, Society of Petroleum Engineers Journal, 7(03) (1967) 310-318.
[11] R. Pine, P. Ledingham, C. Merrifield, In-situ stress measurement in the Carnmenellis granite—II. Hydrofracture tests at Rosemanowes quarry to depths of 2000 m, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1983, pp. 63-72.
[12] J. Geertsma, F. De Klerk, A rapid method of predicting width and extent of hydraulically induced fractures, Journal of Petroleum Technology, 21(12) (1969) 1,571-571,581.
[13] A.K. Zheltov, 3. Formation of vertical fractures by means of highly viscous liquid, in: 4th world petroleum congress, World Petroleum Congress, 1955.
[14] T. Perkins, L. Kern, Widths of Hydraulic Fractures. JPT 13 (9): 937–949, Trans., AIME, 222 ,1961.
[15] R. Nordgren, Propagation of a vertical hydraulic fracture, Society of Petroleum Engineers Journal, 12(04) (1972) 306-314.
[16] S.O. Choi, J.-J. Shin, Numerical modeling of hydraulic fracture propagation from wellbore, Arr’MOrAShOD In Stanford UniverSI%, PA-1, 2001.
[17] X. Zhang, R. Jeffrey, A. Bunger, M. Thiercelin, Initiation and growth of a hydraulic fracture from a circular wellbore, International Journal of Rock Mechanics and Mining Sciences, 48(6) (2011) 984-995.
[18] S. Wang, L. Sun, A. Au, T. Yang, C. Tang, 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials, Construction and Building Materials, 23(6) (2009) 2196-2206.
[19] T.W. Doe, G. Boyce, Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stresses, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1989, pp. 605-611.
[20] B.C. Haimson, Z. Zhao, Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure, in: The 32nd US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 1991.
[21] D.R. Schmitt, M.D. Zoback, Diminished pore pressure in low-porosity crystalline rock under tensional failure: Apparent strengthening by dilatancy, Journal of Geophysical Research: Solid Earth, 97(B1) (1992) 273-288.
[22] D. Schmitt, M. Zoback, Infiltration effects in the tensile rupture of thin walled cylinders of glass and granite: Implications for the hydraulic fracturing breakdown equation, in: International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier, 1993, pp. 289-303.
[23] D. Schmitt, M. Zoback, Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests—a proposed breakdown equation employing a modified effective stress relation for tensile failure, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1989, pp. 499-506.
[24] A. Lakirouhani, E. Detournay, A. Bunger, A reassessment of in situ stress determination by hydraulic fracturing, Geophysical Journal International, 205(3) (2016) 1859-1873.